Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Journal of clinical medicine ; 12(5), 2023.
Article in English | EuropePMC | ID: covidwho-2258103

ABSTRACT

Liver injury occurs frequently as a consequence of SARS-CoV-2 infection. Direct infection of the liver leads to hepatic impairment with elevated transaminases. In addition, severe COVID-19 is characterized by cytokine release syndrome, which may initiate or exacerbate liver injury. In patients with cirrhosis, SARS-CoV-2 infection is associated with acute-on-chronic liver failure. The Middle East and North Africa (MENA) region is one of the world's regions characterized by a high prevalence of chronic liver diseases. Both parenchymal and vascular types of injury contribute to liver failure in COVID-19, with a myriad of pro-inflammatory cytokines playing a major role in perpetuating liver injury. Additionally, hypoxia and coagulopathy complicate such a condition. This review discusses the risk factors, and the underlying causes of impaired liver functions in COVID-19, with a focus on key players in the pathogenesis of liver injury. It also highlights the histopathological changes encountered in postmortem liver tissues as well as potential predictors and prognostic factors of such injury, in addition to the management strategies to ameliorate liver damage.

2.
Comput Struct Biotechnol J ; 19: 976-988, 2021.
Article in English | MEDLINE | ID: covidwho-2266096

ABSTRACT

Chemokines are crucial inflammatory mediators needed during an immune response to clear pathogens. However, their excessive release is the main cause of hyperinflammation. In the recent COVID-19 outbreak, chemokines may be the direct cause of acute respiratory disease syndrome, a major complication leading to death in about 40% of severe cases. Several clinical investigations revealed that chemokines are directly involved in the different stages of SARS-CoV-2 infection. Here, we review the role of chemokines and their receptors in COVID-19 pathogenesis to better understand the disease immunopathology which may aid in developing possible therapeutic targets for the infection.

3.
J Clin Med ; 12(5)2023 Mar 06.
Article in English | MEDLINE | ID: covidwho-2258104

ABSTRACT

Liver injury occurs frequently as a consequence of SARS-CoV-2 infection. Direct infection of the liver leads to hepatic impairment with elevated transaminases. In addition, severe COVID-19 is characterized by cytokine release syndrome, which may initiate or exacerbate liver injury. In patients with cirrhosis, SARS-CoV-2 infection is associated with acute-on-chronic liver failure. The Middle East and North Africa (MENA) region is one of the world's regions characterized by a high prevalence of chronic liver diseases. Both parenchymal and vascular types of injury contribute to liver failure in COVID-19, with a myriad of pro-inflammatory cytokines playing a major role in perpetuating liver injury. Additionally, hypoxia and coagulopathy complicate such a condition. This review discusses the risk factors, and the underlying causes of impaired liver functions in COVID-19, with a focus on key players in the pathogenesis of liver injury. It also highlights the histopathological changes encountered in postmortem liver tissues as well as potential predictors and prognostic factors of such injury, in addition to the management strategies to ameliorate liver damage.

4.
Viruses ; 14(11)2022 Nov 03.
Article in English | MEDLINE | ID: covidwho-2200863

ABSTRACT

Chemokines constitute a group of small, secreted proteins that regulate leukocyte migration and contribute to their activation. Chemokines are crucial inflammatory mediators that play a key role in managing viral infections, during which the profile of chemokine expression helps shape the immune response and regulate viral clearance, improving clinical outcome. In particular, the chemokine ligand CXCL10 and its receptor CXCR3 were explored in a plethora of RNA and DNA viral infections. In this review, we highlight the expression profile and role of the CXCL10/CXCR3 axis in the host defense against a variety of RNA and DNA viral infections. We also discuss the interactions among viruses and host cells that trigger CXCL10 expression, as well as the signaling cascades induced in CXCR3 positive cells.


Subject(s)
Chemokine CXCL10 , Virus Diseases , Humans , Chemokine CXCL10/genetics , RNA , Virus Diseases/genetics , DNA
5.
Front Immunol ; 13: 865845, 2022.
Article in English | MEDLINE | ID: covidwho-1834407

ABSTRACT

Since its emergence as a pandemic in March 2020, coronavirus disease (COVID-19) outcome has been explored via several predictive models, using specific clinical or biochemical parameters. In the current study, we developed an integrative non-linear predictive model of COVID-19 outcome, using clinical, biochemical, immunological, and radiological data of patients with different disease severities. Initially, the immunological signature of the disease was investigated through transcriptomics analysis of nasopharyngeal swab samples of patients with different COVID-19 severity versus control subjects (exploratory cohort, n=61), identifying significant differential expression of several cytokines. Accordingly, 24 cytokines were validated using a multiplex assay in the serum of COVID-19 patients and control subjects (validation cohort, n=77). Predictors of severity were Interleukin (IL)-10, Programmed Death-Ligand-1 (PDL-1), Tumor necrosis factors-α, absolute neutrophil count, C-reactive protein, lactate dehydrogenase, blood urea nitrogen, and ferritin; with high predictive efficacy (AUC=0.93 and 0.98 using ROC analysis of the predictive capacity of cytokines and biochemical markers, respectively). Increased IL-6 and granzyme B were found to predict liver injury in COVID-19 patients, whereas interferon-gamma (IFN-γ), IL-1 receptor-a (IL-1Ra) and PD-L1 were predictors of remarkable radiological findings. The model revealed consistent elevation of IL-15 and IL-10 in severe cases. Combining basic biochemical and radiological investigations with a limited number of curated cytokines will likely attain accurate predictive value in COVID-19. The model-derived cytokines highlight critical pathways in the pathophysiology of the COVID-19 with insight towards potential therapeutic targets. Our modeling methodology can be implemented using new datasets to identify key players and predict outcomes in new variants of COVID-19.


Subject(s)
COVID-19 , Cytokines , Disease Progression , Humans , Pandemics , SARS-CoV-2 , Severity of Illness Index
6.
Viruses ; 14(1)2022 01 17.
Article in English | MEDLINE | ID: covidwho-1625346

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a major complication of the respiratory illness coronavirus disease 2019, with a death rate reaching up to 40%. The main underlying cause of ARDS is a cytokine storm that results in a dysregulated immune response. This review discusses the role of cytokines and chemokines in SARS-CoV-2 and its predecessors SARS-CoV and MERS-CoV, with particular emphasis on the elevated levels of inflammatory mediators that are shown to be correlated with disease severity. For this purpose, we reviewed and analyzed clinical studies, research articles, and reviews published on PubMed, EMBASE, and Web of Science. This review illustrates the role of the innate and adaptive immune responses in SARS, MERS, and COVID-19 and identifies the general cytokine and chemokine profile in each of the three infections, focusing on the most prominent inflammatory mediators primarily responsible for the COVID-19 pathogenesis. The current treatment protocols or medications in clinical trials were reviewed while focusing on those targeting cytokines and chemokines. Altogether, the identified cytokines and chemokines profiles in SARS-CoV, MERS-CoV, and SARS-CoV-2 provide important information to better understand SARS-CoV-2 pathogenesis and highlight the importance of using prominent inflammatory mediators as markers for disease diagnosis and management. Our findings recommend that the use of immunosuppression cocktails provided to patients should be closely monitored and continuously assessed to maintain the desirable effects of cytokines and chemokines needed to fight the SARS, MERS, and COVID-19. The current gap in evidence is the lack of large clinical trials to determine the optimal and effective dosage and timing for a therapeutic regimen.


Subject(s)
COVID-19/immunology , Adaptive Immunity , Chemokines/antagonists & inhibitors , Chemokines/immunology , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Cytokines/antagonists & inhibitors , Cytokines/immunology , Humans , Immunity, Innate , Inflammation , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2/pathogenicity , COVID-19 Drug Treatment
7.
Curr Med Res Opin ; 37(6): 929-938, 2021 06.
Article in English | MEDLINE | ID: covidwho-1146331

ABSTRACT

In March 2020, COVID-19 infection caused by SARS-CoV-2 has been declared to be a global pandemic, where its complications, severity and mortality are reported to be due to the released inflammatory cytokines or the so-called cytokine storm. This is quite similar to that observed in the autoimmune and chronic inflammatory rheumatic disease, rheumatoid arthritis (RA). It was hypothesized that RA patients are at a higher risk of acquiring COVID-19; however, recent studies reported that they are not when compared to the rest of the population. In this review, we aim to highlight the mutual pathological features, cytokine profiles and risk factors between COVID-19 and RA. Also, many researchers are currently working to explore therapeutic agents that could aid in the eradication of COVID-19 infection. Due to the similarity between the inflammation status in COVID-19 and RA, many anti-rheumatic drugs such as hydroxychloroquine, tocilizumab, baricitinib and anakinra were proposed to be therapeutic modalities for COVID-19 infection.


Subject(s)
Arthritis, Rheumatoid , COVID-19 Drug Treatment , COVID-19 , Cytokine Release Syndrome , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , COVID-19/complications , COVID-19/immunology , Cytokine Release Syndrome/etiology , Cytokine Release Syndrome/immunology , Cytokines/blood , Humans , Risk Factors
8.
Infect Drug Resist ; 13: 3243-3254, 2020.
Article in English | MEDLINE | ID: covidwho-820195

ABSTRACT

COVID-19 infection caused by the newly discovered coronavirus severe acute respiratory distress syndrome virus-19 (SARS-CoV-2) has become a pandemic issue across the globe. There are currently many investigations taking place to look for specific, safe and potent anti-viral agents. Upon transmission and entry into the human body, SARS-CoV-2 triggers multiple immune players to be involved in the fight against the viral infection. Amongst these immune cells are NK cells that possess robust antiviral activity, and which do not require prior sensitization. However, NK cell count and activity were found to be impaired in COVID-19 patients and hence, could become a potential therapeutic target for COVID-19. Several drugs, including glatiramer acetate (GA), vitamin D3, dimethyl fumarate (DMF), monomethyl fumarate (MMF), natalizumab, ocrelizumab, and IFN-ß, among others have been previously described to increase the biological activities of NK cells especially their cytolytic potential as reported by upregulation of CD107a, and the release of perforin and granzymes. In this review, we propose that such drugs could potentially restore NK cell activity allowing individuals to be more protective against COVID-19 infection and its complications.

9.
Front Immunol ; 11: 1372, 2020.
Article in English | MEDLINE | ID: covidwho-619471

ABSTRACT

Current guidelines for COVID-19 management recommend the utilization of various repurposed drugs. Despite ongoing research toward the development of a vaccine against SARS-CoV-2, such a vaccine will not be available in time to contribute to the containment of the ongoing pandemic. Therefore, there is an urgent need to develop a framework for the rapid identification of novel targets for diagnostic and therapeutic interventions. We analyzed publicly available transcriptomic datasets of SARS-CoV infected humans and mammals to identify consistent differentially expressed genes then validated in SARS-CoV-2 infected epithelial cells transcriptomic datasets. Comprehensive toxicogenomic analysis of the identified genes to identify possible interactions with clinically proven drugs was carried out. We identified IFITM3 as an early upregulated gene, and valproic acid was found to enhance its mRNA expression as well as induce its antiviral action. These findings indicate that analysis of publicly available transcriptomic and toxicogenomic data represents a rapid approach for the identification of novel targets and molecules that can modify the action of such targets during the early phases of emerging infections like COVID-19.


Subject(s)
Coronavirus Infections/genetics , Coronavirus Infections/immunology , Gene Expression Profiling , Membrane Proteins/genetics , Pneumonia, Viral/genetics , Pneumonia, Viral/immunology , RNA-Binding Proteins/genetics , 2',5'-Oligoadenylate Synthetase/genetics , Animals , Antiviral Agents/pharmacology , Betacoronavirus/physiology , COVID-19 , Disease Models, Animal , Ferrets , Gene Expression Regulation/drug effects , Humans , Immunity, Innate , Lung , Macaca fascicularis , Mice , Myxovirus Resistance Proteins/genetics , Pandemics , SARS-CoV-2 , Species Specificity , Up-Regulation/drug effects , Valproic Acid/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL